Publications

My publications grouped according to years

2017

  1. Deep Learning Inspired Prognostics Scheme for Applications Generating Big Data
    Krishnan Raghavan, Sarangapani Jagannathan, and V. A. Samaranayake
    In International Joint Conference on Neural Networks (AR:15), 2017

2018

  1. Distributed Learning of Deep Sparse Neural Networks for High-Dimensional Classification
    Shweta Garg, Krishnan Raghavan, Sarangapani Jagannathan, and 1 more author
    In IEEE International Conference on Big Data (AR:18.7), 2018
  2. A Multi-Step Nonlinear Dimension-Reduction Approach with Applications to Bigdata
    Krishnan Raghavan, V.A. Samaranayake, and S. Jagannathan
    In INNS Conference on Big Data and Deep Learning, 2018
  3. Direct Error Driven Learning for Deep Neural Networks with Applications to Bigdata
    Krishnan Raghavan, Sarangapani Jagannathan, and V. A. Samaranayake
    In International Conference on Big Data and Deep Learning, 2018
  4. A Minimax Approach for Classification with Big-data
    Krishnan Raghavan, Sarangapani Jagannathan, and V. A. Samaranayake
    In IEEE International Conference on Big Data (AR: 18.7), 2018
  5. A Multi-Step Nonlinear Dimension-Reduction Approach with Applications to Big Data
    Krishnan Raghavan, V. A. Samaranayake, and Sarangapani Jagannathan
    2018

2019

  1. Deep Neural Network Learning-Based Classifier Design for Big-Data Analytics
    Krishnan Raghavan
    2019
  2. Direct Error-Driven Learning for Deep Neural Networks with Applications to Big Data
    Krishnan Raghavan, Sarangapani Jagannathan, and V. A. Samaranayake
    2019
  3. A Hierarchical Dimension Reduction Approach for Big Data with Application to Fault Diagnostics
    Krishnan Raghavan, V. A. Samaranayake, and S. Jagannathan
    2019

2020

  1. Direct Error Driven Learning for Classification in Applications Generating Big-Data
    Krishnan Raghavan, S. Jagannathan, and V. A. Samaranayake
    In Development and Analysis of Deep Learning Architectures, 2020
  2. Distributed Min–Max Learning Scheme for Neural Networks With Applications to High-Dimensional Classification
    Krishnan Raghavan, Shweta Garg, Sarangapani Jagannathan, and 1 more author
    2020

2021

  1. Optimal Adaptive Control of Partially Uncertain Linear Continuous-Time Systems with State Delay
    Rohollah Moghadam, S. Jagannathan, Vignesh Narayanan, and 1 more author
    In Handbook of Reinforcement Learning and Control, 2021
  2. Formalizing the Generalization-Forgetting Trade-off in Continual Learning
    Krishnan Raghavan, and Prasanna Balaprakash
    In Advances in Neural Information Processing Systems (AR:20), 2021
  3. A Game Theoretic Approach for Addressing Domain-Shift in Big-Data
    Krishnan Raghavan, Sarangapani Jagannathan, and V. A. Samaranayake
    2021
  4. Machine-Learning-Based Inversion of Nuclear Responses
    Krishnan Raghavan, Prasanna Balaprakash, Alessandro Lovato, and 2 more authors
    2021

2022

  1. Autodeuq: Automated Deep Ensemble with Uncertainty Quantification
    Romain Egele, Romit Maulik, Krishnan Raghavan, and 3 more authors
    In 26th International Conference on Pattern Recognition (ICPR), 2022
  2. Continual Learning via Dynamic Programming
    Krishnan Raghavan, and Prasanna Balaprakash
    In International Conference on Pattern Recognition, 2022
  3. Automated Continual Learning of Defect Identification in Coherent Diffraction Imaging
    Orcun Yildiz, Henry Chan, Krishnan Raghavan, and 5 more authors
    In IEEE/ACM International Workshop on Artificial Intelligence and Machine Learning for Scientific Applications (AI4S), 2022

2023

  1. SF-SFD: Stochastic Optimization of Fourier Coefficients to Generate Space-Filling Designs
    Manisha Garg, Tyler Chang, and Krishnan Raghavan
    In Winter Simulation Conference, Accepted, 2023
  2. ‪Graph Neural Networks for Detecting Anomalies in Scientific Workflows
    Hongwei Jin, Krishnan Raghavan, George Papadimitriou, and 5 more authors
    2023
  3. Classification of Events from \\backslashalpha \-Induced Reactions in the MUSIC Detector via Statistical and ML Methods
    Krishnan Raghavan, Melina L. Avila, Prasanna Balaprakash, and 2 more authors
    2023
  4. Cooperative Deep Q -Learning Framework for Environments Providing Image Feedback
    Krishnan Raghavan, Vignesh Narayanan, and Sarangapani Jagannathan
    2023
  5. Learning Continually on a Sequence of Graph – The Dynamical System Way
    Krishnan Raghavan, and Prasanna Balaprakash
    2023
  6. Learning to Control Using Image Feedback
    Krishnan Raghavan, Vignesh Narayanan, and Jagannathan Saraangapani
    2023